
Programming Techniques for
 Moving Scientific Simulation
 Codes to Roadrunner

Paul Woodward,
 Jagan Jayaraj,  Pei-Hung Lin, and David Porter

Laboratory for Computational Science & Engineering

 University of Minnesota

Roadrunner Tutorial #5
 March 12, 2008



Special Features of PPM Numerical Algorithm:
1-D passes result in difference stencil that is 
wide in the direction of the pass.
This suggests strategy for extreme pipelining.
Global communication needed only to set the 
time step value, and out of date information 
can be used.
This allows purely local communication and 
eliminates all need for barrier synchronization.
Huge amount of computation performed in 
order to deliver high accuracy.
This eases the memory bandwidth 
requirement.



So How Do I Do That?
1-D passes can be used even in truly multi-D 
numerical algorithms.
Evaluate all the X-derivatives in the X-pass.
Global communication is highly overrated, but 
I admit that this view is controversial.
Even if you must do it, perhaps you can find 
something to do while it is happening.
Huge amount of computation performed.
Everybody is doing a huge amount of 
computation, but perhaps not all in the same 
time step or in the same physics module.



So What is Special About Cell?
The challenge of Cell programming is almost 
entirely derived from its very small on-chip 
memory (the “local store”).
The aggregate performance of a Cell CPU is 
also almost entirely derived from the small on-
chip memory.
Otherwise, the Cell SPE core can be viewed 
as a scientific computing core.  It has all you 
need and not a single thing more.
(You really didn’t need all that on-chip 
memory.  Really.  Believe me.)



Why can’t I just recompile my present code?
You probably can, but on Cell you probably 
won’t like what you get.
Suppose that your code is “blocked for cache.”
This means that you operate on an on-chip data 
context that is about 2 MB, and you rely on cache 
hardware to push out what you no longer need 
and draw in what you want automatically.
On Cell, you have 256 KB,  8 times less space, 
and nothing is automatic.  You want something 
on chip, you get it.  You want it off, you “put” it.



Cell SPE processing paradigm:
You explicitly lay out your data workspace.
You explicitly fetch data from memory into 
local arrays.
You perform a computation that makes NO 
references to any off-chip data.
You put results into local arrays.
You explicitly write these results back to main 
memory arrays.
You must figure out how to REUSE all your 
local, on-chip arrays.  You must semi-
continuously empty and refill them.



YOU are in control:
Cell treats you like an adult.
The system software assumes that you know 
what you are doing and does not attempt to 
hide the complexity of the system from you.
If indeed you know what you are doing,
you will be rewarded with outstanding 
performance.
IBM is building software to address use by 
casual programmers, but for now, it is 
reasonable to assume that there are no casual 
Cell programmers.



This is a stream processing paradigm:
Data arrives semi-continuously and 
asynchronously with respect to all processing.
Arriving data is stored in local named arrays 
which are continuously refilled after they have 
served their purpose for the data they contain.
This same use-and-refill model happens all the 
way down the line – a modality that demands 
fully pipelined processing.
As results appear at the end of the pipe, they 
are written back to memory in a return 
asynchronous stream.



This is exactly what you should have been doing:
This stream processing paradigm is optimal for 
all cache-memory based machines.
You should have been doing it for the last 15 
years.
Don’t feel bad, no one else was doing it either.
ONE  REASON  NO  ONE  WAS  DOING 
THIS  IS  THAT  COMPILERS  DO  NOT  
GENERATE  THIS  SORT  OF  CODE.
Compilers do not generate this type of code 
because they need your help to do so and are 
too proud to ask you for it.



Haven’t you been doing SOMETHING right?
Of course.
In this tutorial, we will not dwell on these 
things, since you already know them.
We will therefore gloss over:
1)

 
Domain decomposition.

2)
 

MPI message passing.
3)

 
I/O  
(here we give you the benefit of the doubt).

4)
 

Writing vectorizable loops.
We will only mention any of the above list to set 

the context for the hard/new stuff.



General Plan of Computation:
Chop up the grid domain into “grid bricks.”
For simplicity, we will assign one grid brick to 
each Cell processor.
We do 1-D passes in a symmetrized sequence 
of  XYZZYX.
In each pass, data is exchanged with only 2 
neighbors, in the direction of the NEXT pass.
Messages are built as contiguous blocks of 
data in memory and then dispatched all at 
once as early as this is possible.
Actually having to wait for a message to arrive 
is considered a programming failure.



General Plan for I/O:
A separate process is assigned to do all I/O for 
a specific set of nodes (1 to 64, depending).
These processes can run on the Opterons, 
which otherwise have nothing to do.
Data is compressed for output on the SPEs, 
and aggregated and potentially reformatted by 
the I/O processes on the Opterons.
This is also true for restart dumps, which 
make use of the otherwise useless Opteron 
memory to hold a problem image while it is 
written out to disk as the code runs forward.



This Plan will Work on Anything:
If you design your Roadrunner code carefully, 
you can run it on every system on earth.
But you have to be sure to maintain a standard 
Fortran version of the Cell SPE code.
The Cell processor can be emulated in 
OpenMP that will run on anything.
The Opteron functions will of course run on 
anything and can be implemented as extra MPI 
processes.
So you can leverage your effort in moving 
your code to Roadrunner.  You will see 
improvements on every computing system.



Let’s Look at the Code for a single Grid Brick:
This is the code for a single Cell processor.
If we make this grid brick small enough, and 
show that the code will still be efficient, you 
can believe that the code will scale to a million 
cores.
This would be just 128,000 processors.
We take a cubical brick of 32 cells on a side.
We will have, with our million cores, a grid for 
the problem of  40×40×80  bricks, or of only  
1280×1280×2560 cells.
This is “nothing.”



Each grid brick 
of  323 cells is 
decomposed into  
83 sugar cubes 
of  43 cells each.  
On each Cell 
processor, 8 CPU 
cores cooperate 
to update this 
grid brick, using 
shared memory 
to facilitate the 
process.  We will 
consider an 
implementation

with 2 grid bricks per dual-Cell blade, and 4 per Roadrunner 
node, because this is a simple and effective approach.

The Biggest Change is the Data 
Structure.



Each CPU core 
computes, based 
upon its ID 
number, which 
slab of sugar 
cubes, oriented 
in the X-Z plane, 
it will update in 
the X-pass.  The 
updating of 
these slabs 
proceeds in 
parallel.  The top 
plane is updated 
first, so that the

results can be immediately dispatched as an MPI message 
for use in updating the brick above this one in the Y-pass.

8 cores (different colors) simultaneously 
update 8 strips of sugar cubes.



It requires less 
coordination to 
wait until both 
the top and the 
bottom planes of 
sugar cubes 
have been 
updated before 
dispatching both 
MPI messages.  
The messages 
are constructed 
in separate 
arrays, so that 
each one is a

large, contiguous block of data (a concatenation of sugar 
cube records) that can be transmitted efficiently via MPI.

We update the bottom plane directly 
after updating the top plane.



It takes 3 times 
as long to 
update the grid 
brick interior as 
it does to update 
the top and 
bottom planes of 
sugar cubes.  
This gives the 
two MPI 
messages gobs 
of time to arrive 
at their destina- 
tions.  They will 
be needed at the

outset of the next Y-pass.  We can count on them having 
arrived at that point in the program, but we do insert “waits.”

We update the grid brick interior while 
the MPI messages are in transit.



We cannot start 
the Y-pass until 
all the interior 
grid planes are 
updated in the 
previous X-pass.  
For simplicity, we 
place a barrier 
synchronization 
at the end of the 
full grid brick 
update for the X- 
pass, after which 
we must wait on 
the arrival of the

MPI messages from neighboring nodes in Y.  Then we begin 
with the Y-pass update of the near plane of sugar cubes.

We begin the Y-pass by updating the 
near plane of sugar cubes, then the far.



Our barrier 
synchronizing 
the work of all 8 
SPE cores on the 
same Cell CPU is 
very inexpensive, 
since these can 
communicate in 
nanoseconds 
with each other.  
We wait on MPI 
messages, but 
we have NO 
global barrier 
synchronization

of our many MPI processes.  That would be a disaster for 
performance.  And it is completely unnecessary.

We begin the Y-pass by updating the 
near plane of sugar cubes, then the far.



Now let’s 
consider the 
process of 
updating a single 
strip of sugar 
cubes on a single 
Cell SPE core.

We show just 
this single strip 
of sugar cubes 
on the next slide.



Our single-fluid PPM algorithm for flows of Mach 2 or lower 
requires one ghost sugar cube at each end of our strip in 
order to produce updated results in the central 4.

We prefetch one sugar cube while we unpack and operate on 
the previous one cached in our local store.

We write back one updated sugar cube while we fill in values 
in another one cached in our local store.

In preparation for the Y-pass, we transpose the internal 
contents of each updated sugar cube record before writing it 
back to the main memory.



We prefetch one sugar cube while we unpack and operate on 
the previous one cached in our local store.

We write back one updated sugar cube while we fill in values 
in another one cached in our local store.

Returning 
updated 
values

Being filled 
with updated 
values

Being 
operated 
upon

Being 
prefetched 

The sugarcube records shown at the bottom are in main 
memory, while those above are in the SPU local store.



We build a grid-plane processing pipeline in the local store.

Returning 
updated 
values

Being filled 
with updated 
values

Being 
unpacked

Being 
prefetched 

0-1-2-3-4

Local, on-chip data 
workspace representing 
5 active grid planes.



But how on earth do we write this program?

Returning 
updated 
values

Being filled 
with updated 
values

Being 
unpacked

Being 
prefetched 

0-1-2-3-4

Local, on-chip data 
workspace representing 
5 active grid planes.



For our more complex, multi-fluid PPM code, we use 
sugar cubes of just 23 cells and process them 4 at a time.

The brick at the left is in main memory, while the data indicated at the 
right is in the local store.



The strategy I will set out in this tutorial goes as follows:

1. Write a program for updating all the values in just a single 
grid cube.

2. This will require a ghost cube on each end for the X-pass.

3. Debug the program by making the single grid cube have a 
large number of cells on each side, such as 32, 64, or 128.  
This allows something debuggable to happen inside the 
grid cube.

4. Transform the program via a standard procedure.

5. We are developing a 
code transformation 
tool to perform this 
conversion from “slow 
Fortran” to “fast Fortran”



Template PPM Code:

For simplicity, we will leave out the MPI 
(you know how to do that already):

We will look at a code for a single grid brick.

We will use the sugar-cube data structure.

We will implement the parallel update of strips of sugar 
cubes using OpenMP, so that this code runs everywhere.

The OpenMP implementation is extremely similar to the PPU- 
SPU implementation for Cell, so this will be the Fortran 
equivalent of the code for a single Cell processor.

We will focus on how we generate what becomes the highly 
pipelined code for a single SPU.

Then we will show how we coordinate SPUs with the PPU.

This will take all our time.



Performance:

The only reason to care about this is performance.

So what is the performance?



PPMsloflo  Slow & Fast  Fortran  Performance 
10/12/07

PPMsloflo At Nx=128:
Adds/cell  =  1065, Mults/cell  =  1041, Rsqrts/cell  =  3.19  
Recips/cell  =  43.22,   Cvmgms/cell  =  575.      Variables/cell  =  6.

3.0 GHz Clovertown, 4 MB cache,  Slow Fortran:
Nx = 8, 6114 Mflop/s; 2990 flops/cell.
Nx = 16, 6078 Mflop/s; 2613 flops/cell.
Nx = 32, 2111 Mflop/s; 2426 flops/cell.
Nx = 64, 1546 Mflop/s; 2350 flops/cell.
Nx = 128, 1328 Mflop/s; 2302 flops/cell.

3.0 GHz Clovertown, 4 MB cache,  Fast Fortran:
Nx = 8, 7202 Mflop/s; 2984 flops/cell.
Nx = 16, 7216 Mflop/s; 2603 flops/cell.
Nx = 32, 7201 Mflop/s; 2418 flops/cell.
Nx = 64, 6289 Mflop/s; 2322 flops/cell.
Nx = 128, 6178 Mflop/s; 2281 flops/cell.

The Slow 
Fortran 
computation 
will not fit 
into a Cell 
SPU local 
store at any 
of the listed 
sugar cube 
sizes.  On 
Cell there is 
no choice.



Comments on PPMsloflo Slow & Fast  Fortran  Performance

The slow Fortran code is very much easier to write, debug, 
modify, and maintain.

When the grid brick is as small as 163 cells, the entire update 
fits into the 2 MB cache, and the performance jumps up to 6.1 
Gflop/s.

The performance figures on the previous slide are for doing an 
entire problem of the quoted grid size, not just a subdomain of 
a larger problem.

When the problem domain is only a cube 16 cells on a side, the 
entire grid fits into the on-chip cache.  This performance is not, 
however representative of what we will achieve with this code 
when we ask it to update a sequence of grid cubes of 163 cells 
each which make up a larger problem domain.  That task will 
require a great deal of traffic between the CPU and the main 
memory.  The performance for that much harder and much 
more useful task is shown on the next slide.



PPMsloflo Slow & Fast  Fortran  Performance 
5/14/08

Nx = size of problem domain,   N = size of grid briquette 
OMPm indicates  OpenMP with  m  threads

PPMsloflo At Nx=128:
Adds/cell  =  1065, Mults/cell  =  1041, Rsqrts/cell  =  3.19  
Recips/cell  =  43.22,   Cvmgms/cell  =  575.      Variables/cell  =  6.
A few additional flops come from preparation of the output data at 
intervals of 40 time steps.

3.0 GHz Clovertown, 4 MB cache,  Slow Fortran:
Nx = 128, OMP2 N = 16,    3508 Mflop/s/core; 2647 flops/cell.
Nx = 128, OMP4 N = 16,    3478 Mflop/s/core; 2645 flops/cell.
Nx = 128, OMP8 N = 16, 1556 Mflop/s/core; 2644 flops/cell.

3.0 GHz Clovertown, 4 MB cache,  Fast Fortran:
Nx = 128, OMP2 N = 4, 6065 Mflop/s/core; 2314 flops/cell.
Nx = 128, OMP4 N = 4, 6104 Mflop/s/core; 2309 flops/cell.
Nx = 128, OMP8 N = 4, 5993 Mflop/s/core; 2309 flops/cell.



Comments on PPMsloflo Slow & Fast  Fortran  Performance

The slow Fortran code is very much easier to write, debug, 
modify, and maintain.

When we ask all 8 CPU cores in the 2 processors sharing a 
common memory in a PC workstation to cooperatively update a 
suefully large problem (1283 cells is actually not large at all), 
then we find the true limitation of Slow Fortran – the main 
memory bandwidth that it unreasonably requires.

In this case we discover that for Slow Fortran, the 8 cores solve 
the fluid flow problem more slowly than if we leave 4 of the 8 
cores completely idle.

However, for Fast Fortran, each of the 8 cores delivers its full 
potential in this cooperative computation, so that all 8 taken 
together outperform the same 8 cores running the same 
problem in Slow Fortran by a dramatic factor of  4.41  
(accounting both for the higher Mflop/s rate of each core and 
also the smaller number of flops that need to be performed in 
the Fast Fortran implementation).



PPMsloflo Slow & Fast  Fortran  Performance 
2/1/08         Nx = size of entire problem domain

PPMsloflo At Nx=128:
Adds/cell  =  1065, Mults/cell  =  1041, Rsqrts/cell  =  3.19  
Recips/cell  =  43.22,   Cvmgms/cell  =  575.      Variables/cell  =  6.

3.0 GHz Clovertown, 4 MB cache,  Slow Fortran (only 1 thread):
Nx = 8, 6114 Mflop/s; 2990 flops/cell.
Nx = 16, 6078 Mflop/s; 2613 flops/cell.
Nx = 32, 2111 Mflop/s; 2426 flops/cell.
Nx = 64, 1546 Mflop/s; 2350 flops/cell.
Nx = 128, 1328 Mflop/s; 2302 flops/cell.

3.2 GHz Cell SPU, 256 KB cache,  Fast Fortran (16 SPUs coop):
Nx = 32, 7.73 Gflop/s; 2418 flops/cell.
Nx = 64, 5.50 Gflop/s; 2322 flops/cell.
Nx = 128, 5.68 Gflop/s; 2281 flops/cell.
We believe the performance jumps up for the small bricks on 
Cell because there are suddenly no TLB misses.

16 Slow Fortran 
threads do not 
achieve this same 
high performance 
per core.

16 threads all beat 
on the shared 
memory here.



PPMsloflo  Slow  Fortran  Laptop Performance 
11/4/07

PPMsloflo At Nx=128:
Adds/cell  =  1065, Mults/cell  =  1041, Rsqrts/cell  =  3.19  
Recips/cell  =  43.22,   Cvmgms/cell  =  575.      Variables/cell  =  6.

2.4 GHz Core Duo, 4 MB cache,  Slow Fortran:
Nx = 128,   N = 8,    No OMP 4154 Mflop/s; 3021 flops/cell.
Nx = 128,   N = 16,  No OMP 3862 Mflop/s; 2643 flops/cell.
Nx = 128,   N = 16,  OMP2 5066 Mflop/s; 2643 flops/cell.
Nx = 128,   N = 16,  OMP1 3336 Mflop/s; 2643 flops/cell.
Nx = 128,   N = 128,   No OMP 1328 Mflop/s; 2302 flops/cell.

I spent a week trying every possible way to improve performance on 
this slow Fortran expression by using both cores in the Laptop CPU.  
The key turned out to be putting the working data for each thread 
onto the stack rather than in a “threadprivate” common block. 
This is the difference between “OMP1” and “OMP2” above.
The 5 Gflop/s looks pretty good for a laptop, but . . .



PPMsloflo Fast  Fortran  Laptop Performance 
11/4/07

PPMsloflo At Nx=128:
Adds/cell  =  1065, Mults/cell  =  1041, Rsqrts/cell  =  3.19  
Recips/cell  =  43.22,   Cvmgms/cell  =  575.      Variables/cell  =  6.

Stack = private workspace on stack.

2.4 GHz Core Duo, 4 MB cache,  Fast Fortran:
Nx =   64,   N = 4,   OMP2, stack 9754 Mflop/s; 2354 flops/cell.
Nx =   64,   N = 4,   No OMP, stack 5024 Mflop/s; 2354 flops/cell.
Nx = 128,   N = 4,   OMP2, stack 9539 Mflop/s; 2308 flops/cell.
Nx = 256,   N = 4,   OMP2, stack 9037 Mflop/s;   2270 flops/cell.
Who would have believed that my laptop could do 9.75 Gflop/s?

Here we see the benefit of Fast Fortran for a multicore Intel CPU. 
It reduces the main memory bandwidth requirement.



PPMsloflo  Fast  Fortran  Workstation Performance 
11/4/07

PPMsloflo At Nx=128:
Adds/cell  =  1065, Mults/cell  =  1041, Rsqrts/cell  =  3.19  
Recips/cell  =  43.22,   Cvmgms/cell  =  575.      Variables/cell  =  6.

Stack = private workspace on stack.

The per-core performance for 8 threads is only 3.5% lower than for 4 
threads.  Hence there can be very little contention for the main 
memory bus in this parallel application.

3.0 GHz Clovertown, 4 MB cache,  Fast Fortran:
Nx = 128,   N = 4,   OMP4, stack 23.89 Gflop/s; 2292 flops/cell.
Nx = 128,   N = 4,   OMP8, stack 46.09 Gflop/s; 2292 flops/cell.
Nx = 256,   N = 4,   OMP8, stack 46.31 Gflop/s; 2270 flops/cell.
Nx = 512,   N = 4,   OMP8, stack 42.00 Gflop/s; ???? flops/cell.



What you get on four 8-core PC workstations in 4 days of 
running the 2-fluid PPM on a 5123 grid OpenMP+MPI:

The following slides show results (at dump 400, 5147 sec.) of 
deep convection (9 Mm to 30 Mm) in the white-dwarf-like core 
of a 2 solar mass star near the end of its life.

The convection zone above the helium burning shell has engorged 
all the previously processed material, so that it now begins to 
entrain the 2.6 times more buoyant unburned hydrogen fuel.

The mixing fraction of unburned hydrogen is shown in two 
opposite hemispheres on the next 2 slides, and a convection 
pattern that is nearly global in scale is revealed.

Darker colors show the bottoms of descending sheets of cooler gas 
that separate the 4 very large convection cells.

A thin slice through the volume shows the depth to which the 
entrained lighter gas descends – well beyond the level where 
vigorous nuclear burning would take place.

Finally, the magnitude of vorticity and the radial component of the 
velocity are shown in this same slice.













32-bit arithmetic is just fine:
A key to high performance on all of today’s microprocessor 

CPUs is 32-bit arithmetic.

Codes must be carefully written to make this practical.

On the following slides, we show comparisons of the same 
single-mode Rayleigh-Taylor test problem (IWPCTM-11 test 
problem 1) computed first with 64-bit arithmetic and then in 
the second of each slide pair with 32-bit arithmetic.

The heavy gas was 5/3 as dense as the light one in this 
problem, and we view the developing flow along a diagonal 
at times noted in each slide.  Here the time unit is the sound 
crossing time of the width of the problem domain in the 
lighter fluid at the midplane in the initial state.

The grid used in each case was 64×64×512, and a volume 
rendering of the mixing fraction of the two fluids is shown.



32-bit arithmetic is just fine:
This flow of the gas of density 5/3 initially superposed above a 

gas of density 1 in a gravitational field is highly unstable.

The physical instability will exponentially amplify tiny 
differences in the fluid states of the two simulations as time 
progresses.

Nevertheless, blinking the images back and forth reveals 
essentially no differences until 37.5 sound crossing times, 
when the instability has progressed far into the nonlinear 
regime.

Differences between the two simulations are not really 
noticeable until 62.5 sound crossing times, and even at this 
time they are only minor differences of detail.

We conclude that 32-bit arithmetic is just fine for this problem 
with this very carefully written code that makes this OK.



t = 0

64-bit



t = 0

32-bit



t = 12.5

64-bit



t = 12.5

32-bit



t = 25

64-bit



t = 25

32-bit



t = 37.5

64-bit



t = 37.5

32-bit



t = 50

64-bit



t = 50

32-bit



t = 62.5

64-bit



t = 62.5

32-bit



Slow Fortran to Fast Fortran Concept:
Write the program in the simplest possible way, regard- 

less of how inefficiently it will execute when simply compiled 
with a standard compiler and run on a single processor.

Compute all intermediate quantities on the full 3-D grid, 
regardless of the waste and inefficiency this implies.

Debug the code for correctness exploiting this simple form.

When the code is correct, transform it automatically from 
this “Slow Fortran” expression into  “Fast Fortran.”

Compile the Fast Fortran to run on mainstream processors 
as a single-processor module in a parallel program.

Transform the Fast Fortran into Cell-C, with automatic 
translator, and hand it to the GCC compiler for the Cell SPU.

Use this SPU-module in a parallel Cell program.



Operational Details:
By changing parameters in dimension statements, the 

Slow Fortran program can update the entire grid.

On modern laptops this will allow the grid to be as large as 
1283 cells, which is more than sufficient for debugging.

Performance will be in the range from 640 to 1330 Mflop/s, 
so that test runs do not take too long.

For tiny domains, such as 163 cells, a mainstream processor 
cache will contain the whole data context, and performance 
can jump as high as 4 Gflop/s.

An outer program of the same type that supports parallel 
execution of the Fast Fortran module can also support 
parallel execution of the Slow Fortran one on bricks of 163.

OpenMP can be introduced as well, with threads pinned to 
cores, as long as temporary arrays are on the stack.



Walk through outer code:
Although this was planned, we did not do this at the March 12 

tutorial.

The outer code has the MPI message passing, and is not a 
programming style that is unfamiliar to this community.

Therefore we skipped this planned section.



Walk through Xpass1 code:
This exercise also was skipped, as this is just a sequence of 

calls to vanilla Fortran subroutines that is also not unusual.



Walk through PPMsloflo code:
This exercise we did actually do.  This is the single subroutine 

that includes essentially all the computation of the code.

Our present code uses the Fortran pre-processor to produce 
from a single source three separate codes, depending upon 
the settings of various flags:

1. The code for the Cell processor SPU, which consists 
essentially entirely of the single routine PPMsloflo (a bit 
over 5000 Fortran lines, not counting comments).

2. The code for the PPU, which coordinates the SPUs and 
signals the Opteron that MPI messages have been fully 
composed in their buffers in the blade memories.  The PPU 
also computes the initial state for the simulation.

3. The Opteron code, which does all MPI library calls and 
handles all I/O, including output and restart dumps.



Slow Fortran Version of PPMsloflo:
3-D Loop Nests:

Code “basic block” is a 3-D loop nest of the form below, in 
which   ny*nz is an integer multiple of  4.

Scalar temporaries are used extensively in such loops.

do i = 1+ioffl-nbdy,nx+nbdy-ioffr
do k = 1,nz

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,ny
al(j,k,i) = (a(j,k,i-1) + a(j,k,i)) * .5
enddo
enddo
enddo



Slow Fortran 2:
Order of 3-D Loop Nests:

Loop nests are ordered so that the sum   ioffl+ioffr increases 
from one loop nest to the next.  This is a completely natural 
ordering for almost all numerical algorithms, as it expresses 
an informational “light cone” arising from causality.

do i = 1+ioffl-nbdy,nx+nbdy-ioffr
do k = 1,nz

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,ny
al(j,k,i) = (a(j,k,i-1) + a(j,k,i)) * .5
enddo
enddo
enddo



Slow Fortran 3:
Syntax Restrictions (to ease automatic translation):

Continuations allowed only in  SUBROUTINE  statements.

Only 2 permitted forms of vectorizable logic, equivalent to 
Cray’s original  cvmgm and  cvmgz intrinsics.

No more than 2 arithmetical operators per line.

Intrinsic function call requires separate line.

Arithmetic must read correctly left to right with parentheses 
ignored.

No common blocks allowed in code to be translated.

3-D arrays of a standard, conformal shape may be designated 
within storage arrays by means of equivalences.

Restrictions apply only to code to be automatically 
translated to Cell-specific C for the SPU.



Slow Fortran 4:
Array Dimensioning Using Parameters, Not Variables:

dimension   A (ny, nz, 1-nbdy:nx+nbdy)

If  A  is a subroutine argument, it is good programming 
practice for  nx, ny, and nz to be arguments also.

However, for performance of the compiled code, it is best for  
nx,  ny,  and  nz to be parameters set to constant values.

All arrays  A  that are locally allocated must be allocated on the 
stack, if an OpenMP thread executing this code is to perform

This may require a compile-time specification of the stack size 
limit for the linker.

These rules of Slow Fortran guarantee proper data alignment, 
generated by the mainstream Fortran compiler, and they 
avoid “known” previous bugs in the Intel compiler.



Slow Fortran 5:
Syntax Restrictions, continued:

Each serial data copy from or to main memory is expressed in 
a separate loop, preceded by a  DMA  directive and with this 
expression made possible by an  equivalence  statement.

Example:

dimension   Dvar(ny,nz,1-nbdy:nx+nbdy,nvars)
dimension   Dvars(ny*nz*(nx+2*nbdy)*nvars)
equivalence (Dvars,Dvar)
lenvars = ny*nz*(nx+2*nbdy)*nvars

cPPM$ DMA
do i = 1,lenvars
Dvars(i) = whatever(ioff+i)
enddo

cPPM$ END DMA

Here  Dvars is on the stack and hence will be cache resident.



First PPM Loop Nest:
do i = 1-nbdy,n+nbdy
do k = 1,n

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,n
pv = p(j,k,i) / rho(j,k,i)
ceulsq = gamma * pv
ceul2i(j,k,i) = 1. / ceulsq
ceul = 1. / sqrt(ceul2i(j,k,i))
c(j,k,i) = ceul * rho(j,k,i)
. . .
enddo
enddo
enddo

Here we get the sound speeds from the density and pressure.  
This is done in all the cells and all the ghost cells.



Second PPM Loop Nest:
do i = 2-nbdy,n+nbdy
do k = 1,n

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,n
cl(j,k,i) = (c(j,k,i-1) + c(j,k,i)) * .5
clinv(j,k,i) = 1. / c(j,k,i)
temp = (p(j,k,i) – p(j,k,i-1)) * clinv(j,k,i)
drplsl(j,k,i) = (ux(j,k,i) – ux(j,k,i-1)) + temp
. . .
enddo
enddo
enddo

Here we compute Riemann invariant differences.  We require 2 
planes of results from the previous loop nest.  Hence we 
must execute the inner loops of that nest twice before we 
may execute the inner loops of this nest for the first time.



Third PPM Loop Nest:
do i = 2-nbdy,n+nbdy-1
do k = 1,n

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,n
dasppm(j,k,i) = (drplsl(j,k,i) + drplsl(j,k,i+1))
&              * .5
a6sppm(j,k,i) = (drplsl(j,k,i) - drplsl(j,k,i+1))
&              * .5
. . .
enddo
enddo
enddo

Here we compute interpolation coefficients.  We require 2 planes 
of results from the previous loop nest.  Hence we must 
execute the inner loops of that nest twice before we may 
execute the inner loops of this nest for the first time.



Third PPM Loop Nest, Right Justified:
do i = 3-nbdy,n+nbdy
do k = 1,n

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,n
dasppm(j,k,i-1) = (drplsl(j,k,i-1) + drplsl(j,k,i))
&                * .5
a6sppm(j,k,i-1) = (drplsl(j,k,i-1) - drplsl(j,k,i))
&                * .5
. . .
enddo
enddo
enddo

When we fuse all the outer loops on  i  we may now just place 
before the inner loops of this nest a test:

if (i .lt. 3-nbdy)   go to 9000



Elimination of Unnecessary Storage:
isave = i2m2
i2m2 = i2m1
i2m1 = 12m0
i2m0 = isave
if (i .lt. 3-nbdy)   go to 9000

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do jk = 1,n*n
dasppm(jk,i2m1) = (drplsl(jk,i2m1)
&                 + drplsl(jk,i2m0)) * .5
a6sppm(jk,i2m1) = (drplsl(jk,i2m1)
&                 - drplsl(jk,i2m0)) * .5
. . .
enddo

Only 3 grid planes of  drplsl are ever referenced.  Hence all but 
these are unnecessary.  We use integer variables to represent 
these grid planes, and they act like pointers.  Note the barrel 
shift operation on each outer loop traversal.



Code Transformation Steps:

1. Write code for a single grid briquette.

2. Dimension all variables over the entire briquette + ghosts.

3. Inline all subroutines.

4. Order the loops to reflect causality.  Largest extents in index 
i  come first.

5. Right-justify all outermost loops and fuse inner loop pairs.

6. Fuse all outermost loops, inserting jumps to end (9000).

7. Identify live planes for all temporary arrays.  Then change 
references to  i-3,  etc.,  to  i5m3,  or whatever.  Revise 
dimension statements to collapse storage.  Insert barrel 
shifts at outset of each outer loop traversal & initialize 
integer pointer variables before outer loop.



Outer Parallel Code:

1. Write wrapper around code for a single grid briquette. 
This prefetches and fetches briquette records, unpacks them, 
applies boundary conditions (sets ghost cells), 
performs briquette plane update, constructs new briquette 
record, which may be transposed, and writes back new 
briquette and copy, if needed, for MPI message. 
All this executes in the SPU.

2. Write wrapper around the above code. 
Based upon number of my OpenMP thread, compute which 
strips of briquettes to update.  Call the above code to update 
a strip of briquettes repeatedly, keeping all 8 SPUs busy.  
Signal readiness of MPI message portion.  Signal when done. 
All this executes in the SPU.   PPU handles the signals.

3. All message passing, I/O, and restart dump writing in AMD.



We believe that we have now learned 
what works.

Now we need to lessen the 
programming burden.

1. Automate readable, maintainable, 
modifiable Fortran to Fast Fortran.

2. Automate Fast Fortran to Weird C 
(we have mostly done this part).

3. Parallel implementation still manual.  
This too could be automated.



Possible HPC Programming Model:
1.

 

Certain subroutines and all routines they call designated for SPU.

2.

 

Master OpenMP

 

thread executed by PPU, which manages SPU slaves, 
implemented as subsidiary OpenMP

 

threads before translation.

3.

 

Master OpenMP

 

thread in a team executed partially on Opteron

 

and 
partially on PPU.  This splitting of the master thread’s tasks is peculiar 
to Roadrunner.  Only the PPU deals with SPU thread creation and 
coordination.  Only the Opteron

 

executes MPI library calls.  The 
Opteron

 

tranmits

 

data between its and the Cell blade’s memories via 
DaCS

 

library calls (peculiar to Roadrunner).

4.

 

I/O handled by separate MPI process or processes on Opterons.

a.

 

This seems to be the cleanest implementation.

b.

 

Allows fewer than one such process per node on large systems.

c.

 

Consolidates and reformats data, then streams it out of system.

5.

 

Restart dumps handled by separate MPI process on Opteron

 

at each 
node, overlapped with continued code execution.



An Example Code:
It is our intent to produce and make available a fairly readable

 

example code 
that illustrates the points made in this tutorial.

Such a code, with a full Roadrunner parallel implementation, is not yet 
available, but will be generated from a simplification of the multifluid

 PPM code we plan to run on the full Roadrunner configuration in June.

At the moment, the best we can do is to make available a 3-D PPM code for 
flows Mach 2 and below that is implemented in both slow and fast

 Fortran.

This is a code appropriate to run on a dual-core laptop rather than on 
Roadrunner, but it illustrates the most unusual features that are 
discussed in these slides, namely the transformation of the code

 

destined 
for the Cell SPU from a slow to a fast Fortran expression.

This code contains a simplified outer code that runs the slow Fortran version 
in a cache-blocked mode.  Alternatively, this same outer code, with a 
different setting of the parameters defining the size of grid sugar cubes, 
runs the fast Fortran version.  Flop counts are reported by the code.



The Example Code:
The example code is located at  www.lcse.umn.edu/RR

 

and is to be made 
available only through the Los Alamos Roadrunner tutorial Web site.

http://www.lcse.umn.edu/RR
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